TigerControl reference documentation

For an introduction to TigerControl, start at the TigerControl GitHub page.

tigercontrol package

Subpackages

tigercontrol.utils package

dataset_registry
unemployment([verbose]) Description: Checks if unemployment data exists, downloads if not.
uci_indoor([verbose]) Description: Checks if uci_indoor data exists, downloads if not.
sp500([verbose]) Description: Checks if S&P500 data exists, downloads if not.
crypto() Description: Checks if cryptocurrency data exists, downloads if not.
enso(input_signals, include_month, …) Description: Transforms the ctrl_indices dataset into a format suitable for online learning.
random
set_key([key]) Descripton: Fix global random key to ensure reproducibility of results.
generate_key() Descripton: Generate random key.
get_global_key() Descripton: Get current global random key.

tigercontrol.problems package

core

This is a core

Problem()
custom
tigercontrol.problems.CustomProblem() Description: class for implementing algorithms with enforced modularity
tigercontrol.problems.register_custom_problem(…) Description: global custom problem method
control
tigercontrol.problems.ControlProblem() Description: class for online control tests
tigercontrol.problems.control.LDS_Control() Description: Simulates a linear dynamical system.
tigercontrol.problems.control.LSTM_Control() Description: Produces outputs from a randomly initialized recurrent neural network.
tigercontrol.problems.control.RNN_Control() Description: Produces outputs from a randomly initialized recurrent neural network.
tigercontrol.problems.control.CartPole() Description:
tigercontrol.problems.control.DoublePendulum() Acrobot is a 2-link pendulum with only the second joint actuated.
tigercontrol.problems.control.Pendulum([g])
time_series
tigercontrol.problems.TimeSeriesProblem() Description: class for online control tests
tigercontrol.problems.time_series.SP500() Description: Outputs the daily opening price of the S&P 500 stock market index from January 3, 1986 to June 29, 2018.
tigercontrol.problems.time_series.UCI_Indoor() Description: Outputs various weather metrics from a UCI dataset from 13/3/2012 to 11/4/2012
tigercontrol.problems.time_series.ENSO() Description: Collection of monthly values of control indices useful for predicting La Nina/El Nino.
tigercontrol.problems.time_series.Crypto() Description: Outputs the daily price of bitcoin from 2013-04-28 to 2018-02-10
tigercontrol.problems.time_series.Random() Description: A random sequence of scalar values taken from an i.i.d.
tigercontrol.problems.time_series.ARMA() Description: Simulates an autoregressive moving-average time-series.
tigercontrol.problems.time_series.Unemployment() Description: Monthly unemployment rate since 1948.
tigercontrol.problems.time_series.LDS_TimeSeries() Description: Simulates a linear dynamical system.
tigercontrol.problems.time_series.LSTM_TimeSeries() Description: Produces outputs from a randomly initialized recurrent neural network.
tigercontrol.problems.time_series.RNN_TimeSeries() Description: Produces outputs from a randomly initialized recurrent neural network.
pybullet
tigercontrol.problems.pybullet.PyBulletProblem
tigercontrol.problems.pybullet.Simulator
tigercontrol.problems.pybullet.Ant
tigercontrol.problems.pybullet.CartPole
tigercontrol.problems.pybullet.CartPoleDouble
tigercontrol.problems.pybullet.CartPoleSwingup
tigercontrol.problems.pybullet.HalfCheetah
tigercontrol.problems.pybullet.Humanoid
tigercontrol.problems.pybullet.Kuka
tigercontrol.problems.pybullet.KukaDiverse
tigercontrol.problems.pybullet.Minitaur
tigercontrol.problems.pybullet.Obstacles

tigercontrol.models package

core
Model
control
tigercontrol.models.control.ControlModel() Description: class for implementing algorithms with enforced modularity
tigercontrol.models.control.KalmanFilter() Description: Kalman Filter adjusts measurements of a signal based on prior states and knowledge of intrinsic equations of the system.
tigercontrol.models.control.ODEShootingMethod() Description: Implements the shooting method to solve second order boundary value problems with conditions y(0) = a and y(L) = b.
tigercontrol.models.control.LQR() Description: Computes optimal set of actions using the Linear Quadratic Regulator algorithm.
tigercontrol.models.control.MPPI() Description: Implements Model Predictive Path Integral Control to compute optimal control sequence.
tigercontrol.models.control.CartPoleNN() Description: Simple multi-layer perceptron policy, no internal state
tigercontrol.models.control.ILQR() Description: Computes optimal set of actions using the Linear Quadratic Regulator algorithm.
time_series
tigercontrol.models.time_series.TimeSeriesModel() Description: class for implementing algorithms with enforced modularity
tigercontrol.models.time_series.AutoRegressor() Description: Implements the equivalent of an AR(p) model - predicts a linear combination of the previous p observed values in a time-series
tigercontrol.models.time_series.LastValue() Description: Predicts the last value in the time series, i.e.
tigercontrol.models.time_series.PredictZero() Description: Predicts the next value in the time series to be 0, i.e.
tigercontrol.models.time_series.RNN() Description: Produces outputs from a randomly initialized recurrent neural network.
tigercontrol.models.time_series.LSTM() Description: Produces outputs from a randomly initialized LSTM neural network.
tigercontrol.models.time_series.LeastSquares() Description: Implements online least squares.
optimizers
tigercontrol.models.optimizers.Optimizer([…]) Description: Core class for model optimizers
tigercontrol.models.optimizers.Adagrad([…]) Description: Ordinary Gradient Descent optimizer.
tigercontrol.models.optimizers.Adam([pred, …]) Description: Ordinary Gradient Descent optimizer.
tigercontrol.models.optimizers.ONS([pred, …]) Online newton step algorithm.
tigercontrol.models.optimizers.SGD([pred, …]) Description: Stochastic Gradient Descent optimizer.
tigercontrol.models.optimizers.OGD([pred, …]) Description: Ordinary Gradient Descent optimizer.
tigercontrol.models.optimizers.mse(y_pred, …) Description: mean-square-error loss :param y_pred: value predicted by model :param y_true: ground truth value :param eps: some scalar
tigercontrol.models.optimizers.cross_entropy(…) Description: cross entropy loss, y_pred is equivalent to logits and y_true to labels :param y_pred: value predicted by model :param y_true: ground truth value :param eps: some scalar
boosting
tigercontrol.models.boosting.SimpleBoost() Description: Implements the equivalent of an AR(p) model - predicts a linear combination of the previous p observed values in a time-series

tigercontrol.experiments package

core
create_full_problem_to_models(problems_ids, …) Description: Associate all given problems to all given models.
run_experiment(problem, model[, metric, …]) Description: Initializes the experiment instance.
metrics
mse(y_pred, y_true) Description: mean-square-error loss
cross_entropy(y_pred, y_true[, eps]) Description: cross entropy loss, y_pred is equivalent to logits and y_true to labels
experiment
Experiment() Description: Experiment class
new_experiment
NewExperiment() Description: class for implementing algorithms with enforced modularity
precomputed
recompute([verbose, load_bar]) Description: Recomputes all the results.
load_prob_model_to_result([problem_ids, …]) Description: Initializes the experiment instance.

help

email alexjyu@google.com

Need further help

Please join the IRC channel

License

Some license

Indices and tables